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Abstract—The reaction of substituted cinnamic alcohols with bis(sym-collidine)bromine(I) hexafluorophosphate was examined. In
general no oxetane was obtained when a substituent was fixed on the carbon�carbon double bond. However, oxetanes were
formed in high yields when two substituents were present in a of the alcohol function. © 2001 Elsevier Science Ltd. All rights
reserved.

We have recently reported that oxetanes could be
obtained by cyclisation of cinnamyl alcohols using bis-
(collidine)bromine(I) hexafluorophosphate as electro-

phile.1 However, only the alcohol possessing a gem-
dimethyl group in a of the alcohol function led to the
oxetane in a satisfactory yield (Scheme 1).1 These

Table 1. Reaction of a- and b-substituted cinnamyl alcohols with bis(collidine)bromine(I) hexafluorophosphate
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Scheme 1.

the scope of this electrophilic cyclisation. In a first
study, we examined the influence of a substituent fixed
on the carbon�carbon double bond. The substrates
were prepared by conventional procedures. The cyclisa-
tions were carried out by addition of a methylene
chloride solution of bis(collidine)bromine(I) hexafluoro-
phosphate to the alcohols.3 Our results are reported in
Table 1.

No oxetane was obtained with a-substituted cinnamic
alcohols (entries a and b). Ketones formed by migra-
tion of a hydrogen (entry a) or a methyl (entry b) were
isolated. This kind of rearrangement of allylic alcohols
induced by an electrophile has some precedents in the
literature.4 Only the b-substituted cinnamic alcohol 1e
led to the oxetane 2e in moderate yield (entry e). Its

cyclisations occurred via a carbocationic interme-
diate.

Interest in oxetanes has increased rapidly, mainly in
organic synthesis and in industry (for example for the
formation of polymers);2 thus, we decided to investigate

Scheme 2.

Table 2. Reaction of cinnamyl alcohols with bis(collidine)bromine(I) hexafluorophosphate
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Scheme 3.

stereochemistry was easily deduced from its NMR spec-
tra,5 and by a NOESY experiment.

Since the presence of a substituent on the carbon�carbon
double bond was detrimental to the formation of oxe-
tanes, we decided to examine the cyclisation of com-
pounds only substituted in a of the alcohol function.
These alcohols were obtained in two steps by addition
of phenylacetylide lithium to carbonyl compounds, fol-
lowed by reduction of the carbon�carbon triple bond
(Scheme 2).

The subsequent reactions with bis(collidine)bromine(I)
hexafluorophosphate were conducted as reported
above.3 Our results are reported in Table 2. The struc-
tures of the products were established from their spectral
data,5 and their stereochemistries were established by
NOESY experiments. Secondary alcohols (entries a and
b) led mainly to degradation; oxetanes were only
obtained in low yields. Only the tertiary alcohols (entries
c–f) led to oxetanes in good to high yields. When the two
substituents in a of the alcohol function were different
(entries f–h) a mixture of two diastereomers was
obtained. With the acetylenic alcohol (entry h) we
observed a competition between the cyclisation and
migration of the phenylethynyl group.

We also examined the oxidative cleavage of the phenyl
groups. For example, reaction of 3-bromo-2,2-dimethyl-
4-phenyl oxetane 1 with NaIO4 in the presence of a
catalytic amount of ruthenium(III) chloride led to the
desired acid 2 in excellent yield (Scheme 3). These results
allow the preparation of oxetin derivatives. Oxetin (oxe-
tan-2-carboxylic acid) was reported to be a natural
product possessing antibiotic activities.6

In conclusion we report that oxetanes can be obtained
in good yields from cinnamyl alcohols using bis(col-
lidine)bromine(I) hexafluorophosphate as electrophile.
Their transformation into oxetin derivatives is under
investigation.
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